Sums of Independent Random Variables

\(X \sim N(\mu, \sigma^2) \)

\(T = \sum_{i=1}^{n} X_i \)

\[E(T) = E\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} E(X_i) = n\mu \]

\[\text{var}(T) = \text{var}\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} \text{var}(X_i) = n\sigma^2 \]

\(T \sim N(n\mu, n\sigma^2) \)

Snowfall example

\(X \) is the snowfall in a day in inches, \(X \sim N(1, .5^2) \)

What is the probability of getting more than 18 inches of snow in a month?

What is the probability of getting between 6 and 12 inches of snow in a month?
Binomial Distribution

$X = 1$ if Heads, 0 if Tails

$P(\text{Heads}) = p, P(\text{Tails}) = q$

$E(X) = np, \ Var(X) = pq$

Toss the coin n times, and $r = \sum_{i=1}^{n} X_i$

$E(r) = E\left(\sum_{i=1}^{n} X_i\right) = nE(X_i) = np$

$\text{var}(r) = \text{var}\left(\sum_{i=1}^{n} X_i\right) = n \times \text{var}(X_i) = npq$

Polling example

$X = 1$ if for a measure, 0 if against it

$P(X) = .65$

If you survey 100 people, what is the probability that 80 or more will vote for the measure? If you survey 1000 people?
Means of Independent Random Variables

\(X \sim N(\mu, \sigma^2) \)

\(\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \)

\[E(\overline{X}) = E\left(\frac{1}{n} T \right) = \frac{1}{n} E(T) = \frac{1}{n} n \mu = \mu \]

\[\text{var}(\overline{X}) = \text{var}\left(\frac{1}{n} T \right) = (\frac{1}{n})^2 \text{var}(T) = (\frac{1}{n})^2 n \sigma^2 = \sigma^2 / n \]

\(\overline{X} \sim N\left(\mu, \sigma^2 / n \right) \)

also known as the Sampling Distribution

SAT Example

X is the SAT scores of an individual, \(X \sim N(500, 100^2) \).

What is the probability that a random sample of 100 SAT takers has a mean, M, less than 400?

What is the probability that a random sample of 100 SAT takers has a mean, M, between 500 and 600?