Therapeutic Touch

Test healer 100 times to see if she can detect energy fields (i.e., where your hand is)

\[r \sim N(np, npq) \], \(r \) is the # of correct responses

\[r = 52 \]

Hypothesis Testing

1. Null hypothesis (\(H_0 \))
2. Distribution of statistic: \(r \sim N(np, npq) \)
3. Rejection region (one-tailed or two-tailed)
 - one-tailed: \(P(z > 1.645) = .05 \)
 - two-tailed: \(P(z < -1.96) + P(z > 1.96) = .05 \)
4. Calculate statistic
 \[z = \frac{(r - E(r))/SD(r)}{\sqrt{npq}} = \frac{(r - np)/\sqrt{npq}}{5} \]
5. Accept or reject null hypothesis
 Calculated \(z \) does not fall in rejection region, so accept null hypothesis.

IQ Example

Over the years, mean IQ has been 100 with a standard deviation of 15. Do Carleton students have a higher than average IQ?

You collect a random sample of 36 Carleton students and find their mean IQ to be 108.

Are Carleton students different than (higher than) the norm?

Hypothesis Testing

1. Null hypothesis (\(H_0 \))
2. Distribution of statistic: \(M \sim N(100, 15^2/36) \)
3. Rejection region (one-tailed or two-tailed)
 - one-tailed: \(P(z > 1.645) = .05 \)
4. Calculate statistic
 \[z = \frac{(108 - 100)/(15/6)}{\sqrt{15}} \]
5. Accept or reject null hypothesis
 Calculated \(z \) falls in rejection region, so reject \(H_0 \).