Correlation and Regression in SPSS

1. Enter the data from last week’s example on graduate school admissions into SPSS (see data below). Be sure to label your variables. Remember that each person should have their data on one row.

2. Compute a correlation matrix for all of your variables.
 a. Select ANALYSIS ➔ CORRELATE ➔ BIVARIATE
 b. Move the variables you want correlations for into the “Variables” box.
 c. Click “OK”.
 d. Compare the SPSS output to the results we calculated by hand in class last week.

3. Compute simple regressions for each of the independent variables and the dependent variable.
 a. Select ANALYSIS ➔ REGRESSION ➔ LINEAR
 b. Move your dependent (y) variable into the “Dependent” box.
 c. Move one independent (x) variable into the “Independent” box.
 d. Click “OK”.
 e. Compare the SPSS output to the results we calculated by hand in class last week.

4. Compute a multiple regression so all of the independent variables predict the dependent variable.
 a. Select ANALYSIS ➔ REGRESSION ➔ LINEAR
 b. Move your dependent (y) variable into the “Dependent” box.
 c. Move all independent (x) variables into the “Independent” box.
 d. Click “OK”.
 e. Compare the SPSS output to the multiple regression equation I gave you in class last week.

Reliability Analyses in SPSS

1. Enter the data from your scale into SPSS. Be sure to label your variables. Remember that each person should have their data on one row. Each column should be the response to a single test question. The Need for Cognition data from today’s handout is available in an Excel file in the Course Materials folder on COLLAB.

2. Find the reliability of your scale.
 a. Select ANALYSIS ➔ SCALE ➔ RELIABILITY ANALYSIS
 b. Move all your test items into the “Items” box.
 c. Click “Statistics”.
 d. Check boxes to include Descriptives for “Item”, “Scale”, and “Scale if item deleted”. [You can also get a correlation matrix for all your questions by checking “Correlations”.]
 e. Click “Continue”.
 f. Click “OK”.
 g. Compare the SPSS output to the output handed out.

Evaluation of graduate admission candidates data

<table>
<thead>
<tr>
<th></th>
<th>GRE</th>
<th>GPA</th>
<th>Letters</th>
<th>“Success”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adam</td>
<td>650</td>
<td>3.4</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Beth</td>
<td>700</td>
<td>3.6</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>Chris</td>
<td>800</td>
<td>3.2</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>Danielle</td>
<td>590</td>
<td>3.7</td>
<td>7</td>
<td>50</td>
</tr>
<tr>
<td>Ethan</td>
<td>630</td>
<td>3.3</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Fiona</td>
<td>730</td>
<td>3.8</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>George</td>
<td>675</td>
<td>3.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>